Electrospun Scaffolds

Regenerative | Medical Grade | Biomaterials

amsbio (

Randomly orientated Mimetix® scaffold:

Mimics the extracellular matrix while providing a true 3D environment for the cells to grow.

Applications: non weight-bearing bone regeneration; corneal repair; neurosciences. Evaluated with a range of immortalised cancer lines, primary cells and stem cells.

- a. hMSCs grown for 21 days on PLLA scaffold coated with collagen and hydroxyapatite, courtesy of Balaji Raghavendran, University of Malaya, Malaysia.
- b. Liver cancer cells grown for 21 days, the Electrospinning Company.

Aligned Mimetix® scaffold:

Ideal for cells needing physical guidance and/ or where cellular orientation influences cell behaviour and function.

Applications: cardiomyocytes, Schwann cells and oligodendrocytes; for in vitro myelination assays; nerve conduit repair and tendon repair.

- a. Cardiomyocytes grown for 12 days, courtesy of Elena Trepakova, Merck, USA.
- b. Schwann cells grown for 21 days, courtesy of Marie Bechler, Edinburgh University, UK.

Extra Porous Mimetix® air scaffold:

Ideal for flow and bioreactor applications. Up to 95% porosity. Successfully used for stem cell (iPS and hESC) proliferation and differentiation.

a. Mini bioreactor with Mimetix® air scaffold, courtesy of Stobbe Tech A/S. Denmark.

b. Cross section of a 2.5mm scaffold showing complete cell penetration, courtesy of Veronique Chotteau, KTH, Sweden.

Regenerative | Medical Grade | Biomaterials

Why choose the Electrospinning technology

- Versatile process
 Tailored scaffold properties
 Wide range of materials
 Reproducible and scalable

Randomly orientated fibre scaffolds

Format	Size	Scaffold Thickness	Fibre Diameter	Pore Size	Porosity
Disks (loose)	1 to 140 mm diameter	25 to 3000 μm			
Disks supplied in hanging inserts or with retaining rings in multiwell plates	6, 12 or 24 well	25 to 400 μm	0.5 to 10 μm	3 to 150 μm	80-95%
Multiwell Plates (welded)	96 or 384 wells	50 μm			
Sheets (and shapes)	1 to 500 cm ²	25 to 3000 μm			

Aligned fibre orientation scaffolds

Format	Size	Scaffold Thickness	Fibre Diameter	
Cell crown inserts	6, 12 and 24 wells		0.5 to 4 μm	
Multiwell Plates (welded)	96 wells	1 to 8 μm		
Petri dish	10 cm			

Example of Polymers (other polymers and blends are available)

Format	Fibre Diameter	Degradation
Poly Lactides (PLA)	0.5 to 10 μm	>3 years
Poly Lactide glycolides (PLGA)	0.5 to 10 μm	4 weeks to 18 months
Poly Caprolactone (PCL)	0.5 to 10 μm	2 to 3 years
Polyacrylonitrile (PAN)	0.2 to 1.5 μm	none
Poly(lactide-co-caprolac- tone) (PLCL)	0.5 to 10 μm	6 to 18 months

- Sheets can be processed by die-cutting or laser cutting
- Scaffolds are sterilised by gamma, ebeam or EtO
- Scaffolds can be coated or plasma treated for enhanced wettability

QC Capabilities

- Fibre consistency
- Mechanical testing
- Chemical analysis
- Bioburden studies