MagSi-Tools 600, 1.0, 3.0 **Product Description** #### I. Intended use MagSi-Tools are surface activated magnetic particles, intended for covalent immobilization of proteins (e.g. antibodies, enzymes), peptides, nucleic acids or other molecules of interest. Different surface modifications and bead sizes allow for choosing the optimal product for the right molecule to be coupled, and for the intended application. Please take into consideration which groups are available on the ligand for coupling, and try to prevent inactivation or hiding the active or exposed site of the ligand. After coupling the molecule of interest (ligand) is coupled to the magnetic particles, the resulting beads can be used in downstream applications such as: - •Isolating specific target proteins, antibodies, nucleic acids, cells, viruses, etc. (preparative applications) - Detecting specific target proteins, nucleic acids, cells, viruses, etc. (diagnostic applications) - •Immobilizing enzymes, thereby enhancing stability and minimizing auto-catalysis. Magnetic collection of the particle/enzyme complex allows to remove the enzyme from the reaction, and to reuse it in a new reaction. ## II. Principle Magnetic beads are an ideal tool for immobilizing molecules (proteins, enzymes, antibodies, peptides, nucleic acids, etc.) on a solid phase, to be used for e.g. detecting, enriching, or cleaving specific target molecules. The easy and efficient collection of beads in magnetic fields allows for easy rinsing and removal of excess reagents and ligand after coupling the ligand molecule, as well as easy use in downstream applications. The use of magnetic beads does not require columns or centrifugation steps, and are therefore ideal in high-throughput and automated applications. ## Selection of your MagSi-Tool particle: #### **Bead surfaces** MagSi-Tools are magnetic silica beads with different surface activations to best suit your needs. Surfaces available are: Table 1: Active surfaces and example applications of MagSi-tools | Surface activated | Formula | Example Applications | | | |---|------------------------------------|--|--|--| | Silica
(stored in 0.05% sodium
azide) | Si-OH | - End-users' own application
(e.g. functionalization of the
MagSi beads) | | | | Carboxyl
(stored in PBS, 0.05% sodium
azide) | R-COOH | - Protein and peptide
immobilization
- Antibody immobilization | | | | Aldehyde
(stored in PBS, 0.05% sodium
azide) | R-CHO* | - Protein immobilization | | | | Amine (stored in 0.05% sodium azide) | R-NH ₂ | - Protein immobilization | | | | Sulfydryl
(stored in PBS, 0.05% sodium
azide) | R-SH* | - Immobilization via target cysteine groups, coupling to gold surfaces | | | | Tosyl
(stored in DSMO:THF 1:1) | R-CO-N ₂ H ₂ | - Antibody immobilization
- Protein and peptide
immobilization | | | | Hydrazide
(stored in PBS, 0.05% sodium
azide) | R-S-CH ₃ | - Glycoprotein immobilization
- Protein and peptide
immobilization | | | | Epoxy (stored in DSMO:THF 1:1) | R-CH-CH ₂ | - Enzyme immobilization
- Protein and peptide
immobilization | | | * coupling of other organic molecules, such as nucleic acids or carbohydrates, is also possible, CHO- and SH-beads have a limited stability, and must be used for coupling ligand within 2-3 weeks after production. #### Bead size MagSi-Tools magnetic beads come in three sizes, 600 nm, 1 µm and 3 µm. 600 nm beads have the advantage of having a larger surface area and the sedimentation time of 600nm MagSi beads is approximately 4 times slower than that of 1.0µm beads. This allows longer incubation times without shaking/mixing, and may be important in automated and other high-throughput applications in which shaking/mixing options are often lacking. MagSi beads with a diameter of 3um have stronger magnetic properties and will separate approximately 4x faster than 600nm beads under same conditions; approximate separation time is ≤ 1 minute using a suitable magnet. ## III. Material Supplied • 2, 10, or 100 ml MagSi-Tools 600, 1.0 or 3.0 (supplied at 10 ma/ml). #### Additional materials needed - Buffers and Materials (depending on the application, contact for - Magnetic separator for bead separation/collecting (see order information) - Mixer/vortex to homogenize samples and resuspend beads (depending on the application, contact for support) ## IV. Product usage The products are stable at least 1 year after purchasing date when stored at 2-8°C (except CHO- and SH-beads: limited stability, must be used for coupling ligand within 2-3 weeks after production), unless mentioned otherwise on the label. Store beads in well closed vial and in upright position to prevent drying of the beads since this makes them more difficult to re-suspend. Do not freeze the product! Vortex bead suspension well before use. If you expect iron interference in downstream applications, we strongly advise you to rinse the beads before usage. MagSi-Tools are suspended in PBS buffer or water with 0.05% sodium azide (toxic) added as a preservative, or in a 1:1 mixture of DMSO and THF. MSDS of our products can be found at our site (www.amsbio.com). Before using the beads it is important to rinse with water or PBS to remove any components that could interfere with results. ### IV.Protocols for ligand immobilization Table 2: Coupling chemistries and conditions for different MagSi-Tools | Bead
Surface | Chemicals needed | Protein
binding | Treatment | Comments | | |------------------------------|------------------------------------|---|--|---|--| | Carboxyl ¹ (COOH) | EDC/NHS | Amine groups
(from lysine
and/or as
unblocked N-
termini) Lysine,
histidine,
cysteine,
tyrosine etc. | No treatment
needed | Can be used to couple most proteins | | | Aldehyde
(CHO) | Aldehyde/
Amine
reaction | Amine groups | No treatment needed | Add reducing agent to stabilize amide bond | | | Thiol
(SH) | Redox
reaction ³ | Free cysteine | Reduce
disulphides
under non-
denaturing
conditions to
generate free
cysteine. | Useful for
proteins
containing
cysteines. Risk of
multiple coupling | | | Amine ² (NH2) | Gluteral-
dehyde | Amine/
aldehyde | No treatment
needed | Add reducing
agent to
stabilize amide
bond | | | Tosyl | None | Sulfhydryl,
Amine groups | No treatment needed | Useful for antibodies | | | Hydrazide | Sodium
periodate | Oligosacharide
moieties | Oxidize
glycoprotein
under non-
denaturing
conditions. | Useful for glycoproteins | | | Ероху | Adsorption/
reaction
support | Lysine,
histidine,
cysteine,
tyrosine etc. | No treatment
needed | Useful for enzymes | | ¹ The first step is to activate the functional groups with N-hydroxysuccinimide in order of creating a highly reactive succinimide ester which reacts with amine groups contained in protein. Abbreviations: EDC, N-ethyl-N'-(dimethylaminopropyl) carbodiimide; NHS, N-hydroxysuccinimide. 3 Reduction of disulfides with 0.1 M DTE (dithioerythrol); coupling of protein at pH below isoelectric point; deactivate excess thiol with 20 mM PDEA (2-(2-pyridinyldithio) ethane-amine)/ 1MNaCl, pH 4,3 #### Disclaimer For R&D use only. Not for drug, household or other uses. Products contain 0.05% sodium azide which is toxic. Avoid contact with the suspension buffer. When disposing the suspension buffer, flush with large amounts of water. Material Data Sheet (MSDS) is available on our website at www.amsbio.com. ## VI. Technical Data Table 3: Specifications of MagSi-Tools | Product Name | MagSi-Tools | | | | | |-------------------------|---|--------------------------|-----------|--|--| | | 600 | 1.0 | 3.0 | | | | Size | 600 nm | 1.0 μm | 3.0 µm | | | | Concentration | 10 mg/ml | | | | | | | beads/ml | | | | | | | 8 - 20 · 10 ⁹ | 6 - 12 · 10 ⁹ | 1-3 · 109 | | | | Supplied product volume | 2 ml, 10 ml, 100 ml | | | | | | Material | Magnetic silica beads with activated surface | | | | | | Size
Distribution | D5-D95 | | | | | | | 500 – 900 nm | 0.7 - 1.4 μm | 0.6-7.0μm | | | | Sedimentation | Bead Sedimentation 1.2 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | Solution
additives | MagSi-Tools, surface activated: PBS (pH 7.4), 0.05% sodium azide (NaN ₃ , Toxic!), except: 1) MagSi-S, unmodified silica beads and MagSi-NH ₂ , amine-modified silica beads: water, 0.05% sodium azide 2) epoxy- and tosyl-activated beads are supplied in DSMO:THF 1:1. | | | | | | Storage | Store at 2-8°C | | | | | ### VII. Additional Information ## **Order Information** | Product name | Volume | Art. No. | Product name | Volume | Art. No. | |------------------|----------------------|-------------------------------|-----------------------|----------------------|-------------------------------| | MagSi-S 600 | 2ml
10ml
100ml | MD16003
MD18003
MD19003 | MagSi-S CHO 600 | 10ml
100ml | MD18007
MD19007 | | MagSi-S 1.0 | 2ml
10ml
100ml | MD01003
MD03003
MD04003 | MagSi-S CHO 1.0 | 10ml
100ml | MD03007
MD04007 | | MagSi-S 3.0 | 2ml
10ml
100ml | MD41003
MD43003
MD44003 | MagSi-S CHO 3.0 | 10ml
100ml | MD43007
MD44007 | | MagSi-S COOH 600 | 2ml
10ml
100ml | MD16004
MD18004
MD19004 | MagSi-S Tosyl 600 | 2ml
10ml
100ml | MD16008
MD18008
MD19008 | | MagSi-S COOH 1.0 | 2ml
10ml
100ml | MD01004
MD03004
MD04004 | MagSi-S Tosyl 1.0 | 2ml
10ml
100ml | MD01008
MD03008
MD04008 | | MagSi-S COOH 3.0 | 2ml
10ml
100ml | MD41004
MD43004
MD44004 | MagSi-S Tosyl 3.0 | 2ml
10ml
100ml | MD41008
MD43008
MD44008 | | MagSi-S NH2 600 | 2ml
10ml
100ml | MD16005
MD18005
MD19005 | MagSi-S Hydrazide 600 | 2ml
10ml
100ml | MD16013
MD18013
MD19013 | | MagSi-S NH2 1.0 | 2ml
10ml
100ml | MD01005
MD03005
MD04005 | MagSi-S Hydrazide 1.0 | 2ml
10ml
100ml | MD01013
MD03013
MD04013 | | MagSi-S NH2 3.0 | 2ml
10ml
100ml | MD41005
MD43005
MD44005 | MagSi-S Hydrazide 3.0 | 2ml
10ml
100ml | MD41013
MD43013
MD44013 | | MagSi-S SH 600 | 10ml
100ml | MD18006
MD19006 | MagSi-S Epoxy 600 | 2ml
10ml
100ml | MD16010
MD18010
MD19010 | | MagSi-S SH 1.0 | 10ml
100ml | MD03006
MD04006 | MagSi-S Epoxy 1.0 | 2ml
10ml
100ml | MD01010
MD03010
MD04010 | | MagSi-S SH 3.0 | 10ml
100ml | MD43006
MD44006 | MagSi-S Epoxy 3.0 | 2ml
10ml
100ml | MD44010
MD44010
MD44010 | www.amsbio.com info@amsbio.com $^{^{2}}$ Gluteraldehyde gives more stable protein binding than the carbodilimide reagents used with carboxylate beads.