

Mouse anti-SAH 1a/b

Product name Mouse anti-SAH 1a/b
Catalog Number MA00301-50/100

Description Mouse monoclonal antibody against S-Adenosylhomocysteine [301-1]

Specificity MA00301 shows the following reactivities with related compounds: S-Adenosylhomocysteine: 100%,

S-Adenosylmethionine: ~1.5%, Adenosine: <1 %, Homocysteine: < 1%, L-Cysteine: < 1%, Glutathione: < 1%,

L-Cystathionine: < 1%, Methythioadenosine (MTA): < 5%, ADP (adenosine diphosphate): < 1%, ATP

(adenosine triphosphate): < 1%.

Immunogen S-Adenosylhomocysteine conjugated to BSA

Properties

Form Liquid

Storage instructions Store at 4°C, -20°C for long term storage

Storage buffer PBS 10mM pH7.4 (NaCl 150mM), Sodium azide 0.02%, BSA 10mg/ml or PBS 10mM

pH7.4 (NaCl 150mM), Sodium azide 0.02%, Glycerol 50%, BSA 10mg/ml

Purity >95% Purified from mouse ascites fluid by affinity chromatography

Clonality Monoclonal
Clone number 301-1
Immunoglobin isotype IgG3

Affinity Ka = $2.778 \times 10^8 \text{L/mol} (3.60 \times 10^{-9} \text{M})$

Research Areas Methylation of biomolecules (DNA, RNA, proteins, hormones, neurotransmitters, etc.)

One-carbon metabolism Signal Transduction

Metabolism

Pathways and Processes

Cancers
Arthritis
Heart diseases

Neurodegenerative diseases

Atherosclerosis Liver diseases Kidney diseases

Applications

The use of MA00301 in the following tested applications has been tested. The application notes include recommended starting dilutions. Optimal dilutions/concentrations should be determined by the end user. Higher dilution than suggested maybe used in IHC and IF. The product may be used in other not-yet-tested applications.

Application	Notes
cELISA	1:4000/8000
FCM	1:200
IHC	1:200

Target

S-adenosylhomocysteine is a competitive inhibitor of S-adenosylmethionine-dependant methyl transferase reactions. Therefore, it plays a key role in the control of methylation via regulation of the intracellular concentration of S-adenosylhomocysteine.

Cellular localization Cytoplasm, nuclear

For Research Use Only.

AMSBIO | www.amsbio.com | info@amsbio.com

UK & Rest of the World 184 Park Drive, Milton Park Abingdon OX 14 4SE. T: +44 (0) 1235 828 200 F: +44 (0) 1235 820 482

F: +41 (0) 91 605 17 85

Anti-Adenosylhomocysteine antibody [301-1]

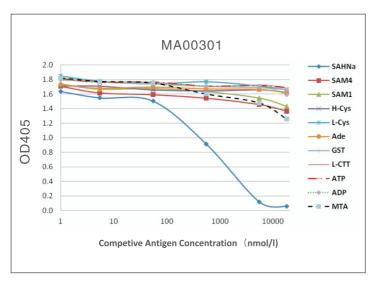


Figure 1 Competitive ELISA using anti-S-Adenosymethionine monoclonal antibody [301-1] (MA00301)

The 0.5 µg/ml of SAH-BSA was coated into 96 wells. Serial dilution of SAH standard (SAHNa), S-Adenosylmethionine (SAM4: Sigma-Aldriq_{h Cat# A2408}), SAM1: Aza-SAM Arthus Biosystems Cat# AST00201), Homocysteine (H-Cys), L-Cysteine (L-Cys), Adenosine (Ade), Glutathione (GST), L-Cystathionine (L-CTT), Methythioadenosine (MTA), ADP (adenosine diphosphate), ATP (adenosine triphosphate) and properly diluted MA00301 were added. HRP conjugated Goat anti-Mouse IgG antibody was used to develop the color. OD450 value was measured on each well.

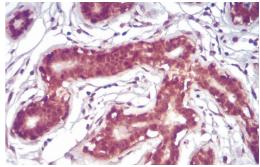
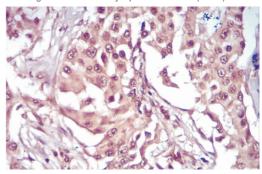



Figure 2 Immunohistochemistry staining was performed using MA00301 with benign breast tissue adjacent to carcinoma. Brown areas indicated strong positive staining in nuclear and cytoplasmic are as (x400).

Figure 3 The same samples as in Figure 2 from breast cancer area. Cytoplasmic and nuclear areas showed weak or background staining(x400).

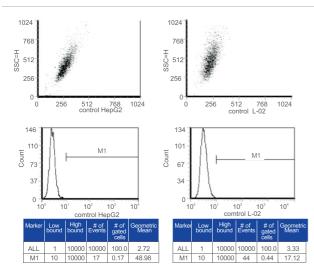
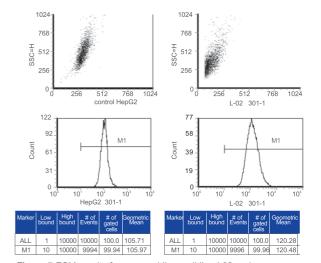



Figure 4 Control for FCM. Normal liver cells L02 and carcinoma cells Hep G2 were stained with the buffer without any antibody.

Figure 5 FCM results from normal liver cell line L02 and hepatocyte carcinoma cell line Hep G2 stained with anti-SAH monoclonal antibody from clone 301-1. Average fluorescence signal n Hep G2 cells (56.99) was reduced compared to that in L02 cells (103.36), indicating SAM level is reduced during carcinogenesis.

For Research Use Only.

AMSBIO | www.amsbio.com | info@amsbio.com

F: +41 (0) 91 605 17 85